Food quantity and quality effects on the expression of inducible defences in Daphnia

21.Mar.2020


This is my PhD-project to achieve a doctoral degree of science (Dr. rer. nat.).

Trophic interactions are a key element to understand food web processes and ecosystem functioning. Nutrients are transferred from primary producers to higher trophic levels, while at the same time predation is one of the main drivers for natural selection. In response to predation, many aquatic prey species have evolved defences that reduce the predation impact. However, defence against one predator could render the prey more vulnerable to other predators. Hence, phenotypic plasticity in defensive traits in prey is a widespread mechanism to cope with a frequently changing predator spectrum. This plasticity may imply changing demands in resources, e.g. for changes in morphology or life history (e.g. number and size of offspring). Therefore, the composition of the phytoplankton community, and thereby the nutrient availability for grazers, may lead to nutrient limitations that potentially also constrain the expression of defences. To get a more comprehensive understanding of how prey suffers from insufficient nutrient supply, we will study the impact of nutrient availability on the expression of defences in cladocerans of the genus Daphnia. Daphnia are unselective filter-feeders, which play a crucial role for the nutrient transfer from primary producers to higher trophic level in lentic freshwater ecosystems and provide a well-established model system in research on predator-prey interactions and nutritional ecology. This project, combining adaptive plasticity and trophic interactions under nutritional constraints, will advance our understanding of food web processes in freshwater ecosystems.
Click here, to see the complete content.